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Sensible heat

Heat transfer that results in a
change in temperature between
objects, without changing

the volume or pressure.
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Greenery as a mitigation and
adaptation strategy to urban heat
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The urban heat island (UHI) effect describes an increase
in temperature of dense urban areas compared with
their suburban or rural surroundings'? (FIG. 1a). The
UHI arises through shifts in energy fluxes associated
with land use change — specifically, an increase in solar
absorption, sensible heat and heat trapping’, and a cor-
responding reduction in evapotranspiration — as well
as increased anthropogenic heat from buildings and
vehicles* (FIC. 1b). UHI intensity typically varies between
0.4°Cand 11°C (REF), and is more pronounced at night?,
exposing residents to higher thermal stress.

Such exposure can have adverse impacts for human
health, producing increased mortality and morbidity,
especially amongst low-income and vulnerable popu-
lations, such as the elderly”®. These impacts are height-
ened during heatwave events when temperatures are
already amplified”'°. For example, during the 2003
European heatwave, it is estimated that the UHI con-
tributed to 50% of the total deaths in the West Midlands,
UK. The same heatwave also caused an estimated 70,000
excess deaths across Europe'?, most prominent in urban
locations such as Paris, France"”. Analyses in various
other global cities also indicate greater mortality in urban
regions during heatwaves owing to the UHI effect, includ-
ing Shanghai'*, Hong Kong'’, Ho Chi Minh'¢, Athens'
and London*.
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Abstract | The absence of vegetation in urban areas contributes to the establishment of the urban
heat island, markedly increasing thermal stress for residents, driving morbidity and mortality.
Mitigation strategies are, therefore, needed to reduce urban heat, particularly against a
background of urbanization, anthropogenic warming and increasing frequency and intensity

of heatwaves. In this Review, we evaluate the potential of green infrastructure as a mitigation
strategy, focusing on greenery on the ground (parks) and greenery on buildings (green roofs and
green walls). Green infrastructure acts to cool the urban environment through shade provision
and evapotranspiration. Typically, greenery on the ground reduces peak surface temperature

by 2-9°C, while green roofs and green walls reduce surface temperature by ~17 °C, also providing
added thermal insulation for the building envelope. However, the cooling potential varies markedly,
depending on the scale of interest (city or building level), greenery extent (park shape and size),
plant selection and plant placement. Urban planners must, therefore, optimize design to maximize
mitigation benefits, for example, by interspersing parks throughout a city, allocating more trees
than lawn space and using multiple strategies in areas where most cooling is required. To do so,
improved translation of scientific understanding to practical design guidelines is needed.

Accordingly, there is an urgent need to mitigate urban
warming and its deleterious impacts, especially against a
background of increased urbanization and anthropogenic
warming. Urbanization, for example, is widely regarded
to increase local temperatures, and, thus, UHI intensity,
in the future'*”". While the impacts of climate change are
more variable — for instance, increasing UHI intensities
in Chicago®, Beijing”* and Melbourne®, but decreasing
them in Paris* and Brussels* — the combined impact of
both factors is anticipated to exacerbate the UHI effect**
and, thereby, UHI-related mortality'"**. Moreover, given
that heatwaves interact non-linearly with UHIs to amplify
urban heat stress in the present climate”, projected increa-
ses in heatwave frequency and intensity might similarly
magnify heat stress further in the future’*".

Government sectors and policymakers have, thus,
considered several active and passive strategies to add-
ress the UHI effect. These methods include: reducing
shortwave and longwave absorption by modifying the
reflectance properties of urban surfaces — increasing
the albedo of building materials and surfaces (particularly
roofs)*>*; designing urban geometry to minimize heat
gain and facilitate the release of stored heat and dissipa-
tion via urban ventilation®*; lessening anthropogenic
heat creation by increasing energy efficiency and reduc-

ing vehicle use®; expanding blue spaces such as lakes
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and rivers”’; and promoting cooling via evapotranspira-
tion with urban greening. Indeed, green infrastructure —
encompassing green roofs, green facades and parkland
expansion — has been regarded as an effective mitiga-
tion strategy for urban heat’”, and, at the same time,
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brings ecosystem services and co-benefits in terms of
carbon sequestration”, phytoremediation*', improved
air quality”” and promoting biodiversity*>*'.

In this Review, we examine urban greenery as a mech-
anism to mitigate urban heat. We begin by outlining the
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< Fig. 1| The urban heat island effect. a| A typical urban heat island profile, showing

higher air temperature in built-up areas and lower temperature in rural areas with more
greenery coverage. b | Factors contributing to the urban heat island effect, highlighting
significant changes in heat and air movement when rural land is urbanized. Red boxes
indicate warming mechanisms and blue boxes indicate cooling mechanisms.

Evapotranspiration

The combined processes of
evaporation of water from

the soil, as well as plant
transpiration, where water

is transported from the soil
through the roots and exits via
the leaf stomata and into the
atmosphere as water vapour.

UHI intensity

The temperature difference
between urban and rural
areas; either surface or air
temperature can be used.

Albedo

The ratio of reflected radiation
over total incident radiation on
a surface, indicating its overall
reflecting potential. Albedo
values can range from O to 1,
with 1 meaning all radiation is
reflected and O indicating that
all radiation is being absorbed.

Latent heat

Heat transfer that results in a
change in state (such as liquid
into vapour), without changing
the temperature.

Bowen ratio

The ratio of sensible heat
flux to latent heat flux
above a surface that contains
moisture. Commonly used
in meteorological and
hydrological studies, it is an
indication of the abundance
of water over surfaces, as
the presence of moisture
will directly influence latent
heat flux density.

physical mechanisms through which greenery contri-
butes to cooling, followed by a discussion of the different
forms of greenery — green parks, green roofs and green
walls — and their cooling potential. The implications
for planning and design of buildings and cities are sub-
sequently considered, followed by the future needs and
priorities of the research community.

Mechanisms of greenery-related cooling
Regardless of the specific approach adopted, green infra-
structure acts to cool urban environments through vari-
ous mechanisms: evapotranspiration®, shade provision*®
and increased albedo’**, the combination of which
reduces the thermal load on the built environment and
its inhabitants (FIC. 2).

Heat flux interception from the plant canopy (and, thus,
provision of shade) is one of the most direct and effective
means of cooling the urban microclimate’®*’, dominating
the cooling potential of green infrastructure. Depending
on the density of their canopies, plants are able intercept
70-90% of incoming solar radiation™"!, still reaching 50%
for deciduous trees during winter when leaf counts are
substantially lowered™. This reduction in both shortwave
and longwave radiation substantially cools urban surfaces
such as buildings, roads and pavements, in turn, reducing
the mean air temperature of surroundings. Shade from
green infrastructure can also lower energy requirements
for cooling, reducing anthropogenic heat sources and
potentially reducing energy savings by 20-80%*~".

Vegetation further allows evapotranspiration. Evapo-
transpiration uses solar energy to convert liquid water
into water vapour, thereby, replacing sensible heat with
latent heat™~*%. Thus, compared with impervious urban
environments where sensible heat gain occurs owing to
an absence of water, this evaporative cooling effect pro-
vides the important function of lowering the Bowen ratio
and temperature of surrounding landscapes™. The
reduction in sensible heat gain also acts to lower plant
canopy surface temperature and decrease longwave
emission to surroundings®.

The presence of greenery can further enhance the
albedo of highly urbanized environments. For exam-
ple, the albedo of built-up areas varies from ~0.1 to 0.2
(REFS*h), whereas the albedo of plants can reach close
t0 0.3 (REF*). Raising the albedo increases the proportion
of incoming radiation that is reflected, thus, decreasing
the component that is absorbed and, therefore, able to
increase surface temperatures™. Given the limited range
of albedo values for plants®, however, the cooling poten-
tial arising from albedo changes is lower than that of
shading provision and evaporative cooling.

Greenery on ground

Retaining or reintroducing green spaces such as gardens
or parks offers one such strategy to mitigate the UHI
effect. As discussed, shade provision from vegetation

canopies blocks shortwave and longwave radiation,
while also promoting evapotranspiration, lowering
longwave emission and, in the case of large urban parks,
minimizing anthropogenic heat sources. Through a
combination of these factors, green spaces provide an
effective means to lower UHI intensity, as revealed
through numerous field measurements®-*, numerical
simulations”’~"> and remote sensing’* ¢

However, while almost all studies reveal tempera-
ture reductions owing to the presence of greenery, the
magnitude of cooling varies substantially. For instance,
ameta-analysis of 24 studies covering tropical and temper-
ate climates indicates air temperature cooling of 0.94°C
(REF.*¥), whereas another based on 89 studies suggests
cooling of 1.5-3.5°C (REF.”). Analyses focusing on one
city further show even larger temperature reductions,
reaching 4.52°C in Changchun, China’, and 6.82°C in
Nagoya, Japan’®. Indeed, compiling 30 published studies
spanning diverse geographic regions indicates that green
parks act to cool air temperature by an average of ~3°C,
with a range of 2-4°C (FIC. 3).

When assessing surface temperature (rather than
air temperature), the cooling potential of green parks is
larger (FIC. 3a), mainly due to better thermal conductiv-
ity of solid surfaces compared with air. Remote sensing
technologies — which provide estimates of cooling over
relatively large (60-120m) spatial footprints — reveal
average surface temperature reductions of 4.2°C, with a
range of 1.9-6.7°C. By contrast, on-site measurements —
which are able to capture temperature changes with higher
granularity — document average reductions of 14°C,
with a range of 9.2-19°C (FIC. 3a).

Thus, while the cooling potential of green parks is
clear, so too are the contrasts in quantitative estimates.
This variability is linked to the methodologies adopted
for measurement (on-site measurements at pedestrian
height as compared with remote sensing techniques,
which are averaged values over large areas), as well as
differences in climate, the size and shape of the park,
and plant selection and placement (FIG. 4), as will now
be discussed.

Climate

The cooling potential of urban greenery on the ground
is influenced by both diurnal”* and seasonal cycles®”®.
On diurnal timescales, maximum temperature reduc-
tions associated with greening tend to occur during
the day. In Hong Kong, for example, an urban park was
found to be 8 °C cooler than its surroundings in the day,
whilst only 2°C cooler at night®'. This temporal differ-
ence in cooling potential can be attributed to the con-
trasting diurnal temperature gradients; during the day,
exposure to direct solar radiation produces large differ-
ences between green and urban spaces, but, by nightfall,
heat is emitted back to the atmosphere in urban environ-
ments as longwave radiation, minimizing urban-rural
contrasts.

Variability in cooling potential is also strongly evident
on seasonal timescales, reaching peak amplitude during
the summer. For instance, in Nagoya, Japan, park-related
cooling was much larger in summer (1.9°C) compared
with winter (0.3°C)*? (FIC. 4a). These differences arise

168 | MARCH 2021 | VOLUME 2

www.nature.com/natrevearthenviron



REVIEWS
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Fig. 2| Greenery-related cooling mechanisms in the urban environment. Urban greenery acts to modify shade provision,
evapotranspiration and albedo. The combination of these three mechanisms reduces sensible heat gain, thereby, lowering
heat gain and surface temperatures. Red boxes indicate warming mechanisms and blue boxes indicate cooling mechanisms.

through the strong dependence on shade potential
and evapotranspiration, which is drastically reduced
in autumn and winter when trees shed their leaves and
canopy cover is reduced.

While the magnitude of temperature reduction dif-
fers between seasons, the temperature reduction differ-
ential has no apparent correlation to specific climatic
regions’””. Indeed, greenery on the ground has been
shown to be effective in providing cooling in tropical®,
subtropical™ and temperate® climates, as well as humid*
and arid" regions. Given the small interquartile range of
air temperature reductions across studies (FIG. 3a), green-
ery on the ground is, therefore, an effective mitigation
strategy for urban heat, regardless of the locale.

Size and shape of park

In addition to climate, the size and shape of the green
space also exerts a strong influence on the cooling poten-
tial of urban parks*". Larger parks tend to have a more
pronounced cooling effect, owing to the net decrease
in sensible heat flux and reduced anthropogenic heat

sources. For instance, in Suzhou, China, the average cool-
ing effect increases from 1.75°C for small (<4 ha), 2.66°C
for medium (4-10ha) to 3.32°C for large green spaces
(>10ha)*. The size at which peak cooling occurs, how-
ever, exhibits pronounced variability, owing to the back-
ground climate and urban context (FIC. 3a). In Fuzhou,
China, for example, the most efficient cooling occurs
at ~4.5ha (REF”), whereas it is 3 ha in Taipei, Taiwan®,
5.6ha in Leipzig, Germany”, and 14 ha in Chongqing,
China”®. The threshold value of efficiency (TVoE) for
park size (FIC. 4¢) has provided some indicative values
of park size to which temperature reduction potential
due to park size starts to plateau”. The TVoE size can
range from 0.5ha to 0.69 ha in temperate cities such as
Copenhagen” and Rome”, to 0.6 ha to 0.95 ha in tropical
cities in Asia'®.

The cooling potential of smaller green spaces is
often contradictory. Some research indicates that small
green areas have the potential to provide air tempera-
ture reductions comparable to large parks®””. However,
urban geometry and prevailing wind conditions become
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important factors, and if such conditions are not favour-
able, small areas can become warmer, not cooler’***.
Indeed, such small spaces are often more susceptible
to urban and anthropogenic influences, increasing
sensible heat gain, for example, through a greater per-
centage of paved surfaces. Accordingly, 14 of 61 small
parks in Taipei were, on average, 0.42 °C hotter than
their surroundings’, and a small 1.5-ha inner-city park
in Melbourne also experienced a 0.2 °C increase in air
temperature during the early part of the day'”". The cool-
ing effect beyond park boundaries can also decrease with
size. For large parks of more than 100 ha, the cooling
effect might extend a few hundred metres beyond the
park periphery, whereas the cooling effect of small green
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spaces (less than 0.1 ha) may not even extend beyond
their boundaries (FIG. 40).

Similar to size, park shape also influences the cool-
ing effect'”. Regularly shaped parks such as square
or circular spaces have been found to exhibit higher
cooling efficiency, which drops as the shape gets more
complex” (FIG. 4d). In addition, the cooling efficiency
of parks is maximized when green spaces are polygo-
nal (circular or regular polygons) compared with lin-
ear (long and narrow)'*>'*. This difference can partly
be attributed to the influence of park shape on plant
selection. Linear parks tend to consist of identical tree
species and often lack smaller trees and shrubbery.
Accordingly, they are prone to heat invasion from areas
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Fig. 3 | Average greenery-related peak temperature reductions. Maximum recorded air and surface temperature
reductions associated with greenery on the ground (panel a) and greenery on buildings (panel b) from previously published
studies (see Supplementary Table 1 for identifier information). Greenery on the ground are separated by studies assessing
temperature changes through remote sensing or field measurements and greenery on buildings are grouped by green
roofs and green walls. Box and whisker plots on the left are produced from the individual studies shown on the right.
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< Fig. 4| Factors contributing to temperature reduction for ground-level greenery.

a| Climate: air temperature difference between urban (Tu) and green (Tg) spaces in Nagoya,
central Japan, revealing greater cooling potential in the summer. b | Distance from park:
in situ (dotted points) and modelled (lines) air temperature rise with distance from the
park in several areas of Japan, revealing cooling within 50 m from the green space.
Orange lines indicate results from an isotropic diffusion model and blue lines indicate
results from an incorporating buoyancy model. Solid and dashed lines indicate model
simulations under weak and strong wind conditions, respectively. ¢ | Park size: the
concept of threshold value of efficiency (TVoE) for park cooling based on size, with
indication of possible negative cooling for small parks (red line, left panel). Cooling
effect distance (CED) and cooling effect intensity (CEl) for large, medium and small
green parks of different shapes, revealing that CED diminishes when park size decreases.
d | Park shape: illustration of air temperature associated with parks of contrasting

shape index, indicating that regularly shaped parks cool a larger area. e | Plant selection:
cross-sectional air temperatures associated with different model scenarios of tree
height, canopy size and planting density in Montreal, revealing greater cooling potential
as all three factors increase. f | Plant placement: visualization of tree canopy shade and
ENVI-met simulation showing the difference in air temperature owing to different tree
arrangements, revealing greater cooling potential for multiple, smaller tree patches.
Panel a is adapted with permission from REF.*’. Panel b is adapted with permission from
REF.*°. Panel c is adapted with permission from REF.**°. Panel e is adapted with permission
from REF.**’. Panel f is adapted with permission from REFS**%,

outside the green spaces and, thus, display lesser over-
all temperature reduction. Polygonal green spaces, by
contrast, tend to trap the cooled air more efficiently via
small trees and shrubs, thereby, maintaining a larger
temperature differential'®.

Cooling effect outside parks

Although green spaces are cooler than the built envi-
ronment, they only take up a small portion of the entire
urban landscape. Therefore, it is important for the cooler
air generated by green spaces to be able to permeate
and cool surrounding parts of the built environment,
so that cooling benefits are tangible over a larger area,
mitigating the UHI. Much effort has, thus, been put
into understanding how these spaces can influence their
surrounding environments’>'*>1%,

How far greening-related temperature reductions
permeate varies markedly. In Beijing, China, for exam-
ple, the cooling effects of 30 urban parks ranges from
2.3°C to 4.8°C and extends 35-840m outside the park,
the distance being governed by park size and character-
istics of the surrounding environment™. An area with
high building density, for instance, can impede air move-
ment and hinder the exchange of cooled air from parks
to their surroundings. In London, UK, park-related
cooling was apparent up to 330 m away from the green
space, with the distance of cooling again scaled linearly
with green space area, but also tree canopy extent'”’.
Cooling is further evident up to 1.1km for a 156-ha
park in Gothenburg, Sweden”. Overall, cooling poten-
tial is increased under stronger wind conditions, sug-
gesting that the surrounding estate should be designed
to maximize ventilation (FIG. 4b).

Thus, although the spatial extent of cooling varies con-
siderably, it is clear that green spaces have the ability to
provide cooling not just within the park (FIC. 4c,d) but also
outside its boundaries (FIG. 4b), particularly when cool-
ing potential is maximized through arranging parks at a
minimum size (at least 1 ha) and placing at appropriate
intervals in the urban area (less than 1km).

Leaf area index

(LAI). Total one-sided leaf
area per unit horizontal
ground surface.

Plant selection and placement

Size alone does not guarantee maximum temperature
reduction, with plant selection and placement also
playing a fundamental role in explaining heterogeneous
park-related cooling (FICS 3a,4e¢,f). For example, owing to
their larger canopy (and, hence, shade) and evapotran-
spiration characteristics, trees provide greater cooling
potential in comparison with shrubs and lawns'**'%.
In particular, in situ estimates from Germany indicate
mean radiant temperature reductions of 39.1 °C under
trees but only 7.5°C on grassland'*’.

The cooling potential of trees themselves, however,
varies markedly, owing to contrasting plant functional
traits, including canopy size and leaf area, both of which
influence shade provision'"'~'"*. Canopy coverage, as esti-
mated by the leaf area index (LAI), for example, is posi-
tively correlated to temperature reduction''; the larger
the canopy, the larger the cooling (FIG. 4¢). Tree species
such as Caesalpinia pluviosa, with dense canopy and large
coverage, can provide more than 90% solar attenuation
and are ideal for improving the urban microclimate'**.
Dense canopies have also been shown to maximize
cooling'’®, reducing radiant exposure at ground level by
up to 92% (REF'"). Similar to shade provision, plant evap-
otranspiration is also species-specific''¥, with maximum
latent heat flux varying by up to ~760 Wm™ (REF.'?).

Interactions between vegetation and buildings must
also be considered, especially with small parks, given
their influence on the urban microclimate. For instance,
shade from trees becomes less effective at reducing tem-
perature when they overlap with shade from buildings'*.
Tree or shrub placement can also influence overall ven-
tilation and result in heat or pollutant trapping within
urban canyons, with model simulations suggesting up to
a40% increase in pollutant concentration arising from
the presence of a dense row of vegetation'”.

Indeed, simulations can be used to understand the
impact of plant placement on the microclimate to facili-
tate planning. The results, however, are often highly con-
textual and dependent not just on plant attributes but
also on the energy exchange characteristics from its sur-
roundings. For instance, while some simulations suggest
maximum cooling for trees planted at equal intervals'*,
others indicate that a clustered arrangement provided
the largest cooling effect'®® (FIG. 4f). Nevertheless, it is
clear that the selection and placement of plants must
be considered in a manner that optimizes shading and
evapotranspiration, and, thereby, cooling (FIC. 4e).

Greenery on buildings

Modern urban landscapes are characterized by their
compact city form, leaving little space for parks and
gardens. In this regard, green roofs and vertical green-
ery (or living walls, green facades) — where vegetation
is transplanted onto building surfaces (FIC. 5) — serve as
alternatives to traditional landscape, providing environ-
mental benefits to the cityscape, without much demand
for ground-level space'”. Much like greenery on the
ground, greenery on buildings acts to cool by modifying
evapotranspiration, shade provision and albedo, but also
reduces heat transmission into (and out of) the build-
ing envelope by enhancing thermal insulation'** (FIC. 2).
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The difference between
moisture content in in situ
air compared with the total
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Fig. 5 | Types of greenery on buildings. Different options for vertical and rooftop greenery, including support system
green walls, carrier system green walls, extensive green roofs and intensive green roofs.

Such greenery strategies can, therefore, feed back to
provide energy savings.

Numerous studies have confirmed the cooling effect
of vertical and rooftop greenery, in some cases, reporting
surface temperatures up to 20 °C (REFS®>'*) and >10°C
(REFS*'2%12%) cooler than exposed surfaces, respectively.
On average, however, it is estimated that green roofs
can reduce peak air temperature by an average of ~3°C
(with a range of 1.5-4.1°C) and peak surface tempera-
ture by an average of ~17°C (with a range of 11-22.4°C).
Similarly, green walls are able to reduce peak air tem-
perature by an average of ~3 °C (with a range of 2-4°C)
and peak surface temperature by an average of ~16°C
(with a range of 10.7-18.8°C) (FIC. 3b). As indicated,
there are significant differences within these systems that
influence cooling potential, as now discussed.

Climate

The magnitude of surface temperature reduction in the
presence of vertical and rooftop greenery is highly
dependent on prevailing climatic conditions, particu-
larly the season. Typically, both green walls and green
roofs are most effective in the summer, when there is
higher evapotranspiration and foliage density (thus,
shade provision and albedo). For example, green roofs
in a Mediterranean climate (Italy) have been shown to
reduce peak surface temperature by 20-30°C in the sum-
mer, but only 10-13 °C during winter'** (FIC. 6a,b), con-
sistent with other analyses in Shanghai'*’, Estonia'*’ and

Michigan''. A seasonal analysis for green walls in
Italy also shows a similar pattern, wherein reductions
in surface temperature peaked at around 6-7°C in the
summer, but only 3.5°C in winter'*”?, with similar trends
found in the UK'”. Thus, greenery on building surfaces
can act to reduce heat gain in summer and abate heat
loss in winter (FIG. 6a,b).

As well as the season, the effectiveness of green
facades and green roofs is also strongly influenced by the
meteorological conditions. In particular, temperature
reduction is most effective in sunny weather, becoming
less potent during cloudy or rainy periods'**'**; in Hong
Kong, for instance, green-roof-related maximum surface
temperature cooling was 19.8°C, 7.74°C and 7.85°C in
sunny, cloudy and rainy weather, respectively'*. This
meteorological sensitivity arises from reduced longwave
and shortwave radiation exposure during cloudy peri-
ods, curtailing temperature rise and, therefore, cooling
potential, and reduced evapotranspiration during peri-
ods of high cloud cover or rain, owing to changes in solar
irradiance and vapour pressure deficit''*'¥, Indeed, it is
thought that a threshold of approximately 300 Wm ™
must be crossed before evapotranspiration cooling is
activated and becomes evident'**.

System selection and placement

Intensive green roof versus extensive green roof. Green
roofs can be intensive or extensive (FIC. 5), respectively
encompassing those that are designed for public access
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or not, influencing their characteristics; intensive green
roofs have deeper soil depths (>250 mm) and can hold
large shrubs or small trees'**'*’, whereas extensive green
roofs have shallow soil depths (~150 mm) and planting
palettes limited to succulents and shrubs'*’. Accordingly,
intensive systems exhibit greater heat absorption and
reduced temperature fluctuations'*'. For example, inten-
sive green roofs have been found to reduce surface tem-
perature by 30°C, but also provide lower air temperature
by up to 4.2°C at 0.3 m height'*. In comparison, a sep-
arate analysis of a green roof consisting of Sedum plants
recorded temperature reductions of less than 2 °C (REF'*).
With careful plant selection, however, it is still possible
to achieve peak air temperature cooling of 4.5 °C (REF."*).

Support green wall versus carrier green wall. As with
green roofs, there are also different types of green walls:
carrier system or support system. In the former, the plant
substrate is distributed over the entire wall, whereas in
the latter, the substrate is limited to the bottom and mesh
used to support climber plants (FIG. 5). As such, carrier
systems tend to exhibit greater insulation capabilities
than support systems, owing to the substructure, air gap,
substrate and plant layers'**'**. In some cases, differences
of close to 11 °C have been documented, with carrier sys-
tems and support systems promoting surface cooling of
21.5°Cand 10.7°C, respectively, in Spain'**. Accordingly,
energy savings reached 23% for carrier green walls and
19% for support green walls'*.

System placement. The ability of green walls and green
roofs to reduce temperature in the urban environment is
contingent upon several morphological factors, such as
wall size and shape, as well as conditions of their imme-
diate surroundings. Plant cooling potential from shade
and evapotranspiration can be severely undermined
when shade is already provided by adjacent buildings
or when lack of access to sunlight impedes the evapo-
transpiration process (transpiration is a light-dependent
process)'*. Given that green roofs are typically located
high on buildings, the chances of overshadowing from
taller structures is often small.

Green walls, by contrast, are often influenced by
their placement, specifically, through self-shading and
overshadowing from other buildings. In one instance,
green-wall-related temperature reductions have dropped
from 16 °C to 2°C as a result of self-shading, illustrating
the dependence of time of day on cooling potential'*’.
Similarly, the orientation of green walls is also impor-
tant (FIC. 6¢,d): east-facing and west-facing walls typically
experience maximum cooling potential at different times
of the day, owing to the direction exposure of the rising
and setting sun, in one instance, lowering peak surface
temperatures by 15°C and 16.4°C at around 12:00 and
19:00, respectively'“’. The south-facing facade, by con-
trast, recorded its peak temperature reduction of 16°C
at 15:45 (FIC. 6q).

Plant selection

Plant selection further has a direct impact on the cool-
ing potential of both green walls and green roofs. Selecting
plants with large foliage will result in higher shade

provision and less exposure to both longwave and short-
wave radiation, lowering surface and air temperature
outdoors, as well as reducing heat transmitted into the
building. Green roofs with bigger shrubs and deeper soil
depths tend to provide better cooling, as there is more
shading from the plant canopy'*"'*%.

In addition to foliage density, plant functional attri-
butes such as leaf size and colour, as well as evapotranspi-
ration rate, further contribute to temperature reduction.
Plants with high LAI, leaf stomatal conductance (indi-
cating transpiration activity), thin and light leaf colour
provide better cooling'”. Specifically, Stachys byzantina
and Salvia officinalis, both tall non-succulent plants with
high LAI, can register surface temperature reductions
of up to 10 °C. Notably, temperature reduction provided
by Sedum (succulent, shortest plant and lowest stomatal
conductance) was approximately 5°C.

The holistic approach to plant selection is important,
as the cooling potential of plants can vary between spe-
cies. For instance, plants with high LAI can contribute
to higher mean radiant temperature exposure, as larger
leaves might get heated up more easily than plants with
smaller leaves, as indicated by a 10°C difference in
peak mean radiant temperature between Phyllanthus
cochinchinensis and Heliconia ‘American Dwarf’*
(FIG. 6¢). Therefore, it is more appropriate to select plants
based on a variety of traits such as plant height, evapo-
transpiration rate and albedo, instead of focusing solely
on foliage density.

Similar to green roofs, the choice of plants selected
will greatly influence the cooling potential of green
walls. Variations in plant evapotranspiration and shade
provision can account for close to 4°C in temperature
reduction (FIG. 6. Plants such as Jasminum officinale dis-
play more cooling due to shade provision, while cooling
from Fuchsia ‘Lady Boothby’ can be attributed more to
transpiration activity'*’.

Implications for urban design

It is clear that urban greenery is effective in reducing
temperature in the built environment: green parks lower
air and surface temperatures by an average of 3°C and
7°C, respectively, while green walls and green roofs
can reduce peak surface temperature by around 17°C.
Moreover, the variability in cooling potential (FIG. 3)
implies that simply adding greenery might not instantly
cool temperatures. Instead, a more nuanced approach
must be adopted when it comes to the selection and
placement of greenery, bearing in mind biotic as well as
abiotic considerations (FICS 4,6). While there are no uni-
versally accepted guidelines, several key concepts from
this Review can be used to help inform urban design and
maximize the mitigation potential of urban greenery.

Greenery on ground

There is evidence to suggest that urban parks should be
0.5-1ha in size to maximize their cooling potential”~'".
In addition, they should be regularly shaped to min-
imize anthropogenic influences and capitalize on the
TVoE (FIC. 4c,d). Ideally, these parks should also be
evenly interspersed throughout the city with spacing
of less than 1km (REFS7>!971°1) all to ensure maximum
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<« Fig. 6| Factors influencing the cooling potential of vertical and rooftop greenery.
Climate: surface temperature of a green roof (blue) and a concrete roof (red) in
summer (panel a) and winter (panel b) in Italy; note the different scales on the y axes.
Peak temperatures are reduced to a much larger extent in summer compared with
winter, but, in both cases, temperature fluctuations are greatly reduced. System
selection and placement: surface temperature profiles associated with green walls
on south-facing (blue), east-facing (green) and west-facing (red) surfaces (panel c),
and an infrared image illustrating the difference between south-facing and east-facing
walls (panel d). Plant selection: diurnal radiant temperature profiles and corresponding
infrared images for three different plant species and concrete (panel e), and mean
wall surface temperature reduction from six plant species (panel f). Panelsaand b
are adapted with permission from REF.'*. Panels c and d are adapted with permission
from REF.'*, Panel e is adapted with permission from REF. . Panel f is adapted with
permission from REF."°.

spillover of cooler air temperatures®-'*>'**. As much as
possible, it is advisable to allocate more trees than lawn
space to block more direct solar radiation®. For smaller
green spaces to provide effective cooling, plants need to
be selected and placed strategically, as informed through
the use of simulation tools to visualize cooling effect from
trees'!>* (FIG. 41).

Pavement or roadside trees are able to reduce surface
and air temperature to a lesser degree, but are typically
located in close proximity to sources of anthropogenic
activity. Their ability to provide cooling is also more
susceptible to influences from the urban geometry and
climate'>>'"*°, providing opportunities to select vege-
tation with specific traits, such as choosing trees with
larger canopies, so that more shade is provided along
pedestrian footpaths during the day''®. Some examples
include Caesalpinia ferrea and Peltophorum pterocar-
pum for tropical''’, Handroanthus chrysotrichus and
Caesalpinia pluviosa for subtropical''’®, and Tilia cordata
for temperature regions'''.

Several major cities already have existing directives
for park provision per capital'”, as well as urban master
plans to gradually increase green cover. In the current
London Plan, greenery is a key component in the themes
of ‘Creating a healthy city’ and ‘Increase efficiency and
resilience’’”. A target of making more than half of
London green by 2050 was set out, with policies imple-
mented to encourage the inclusion of green infrastruc-
ture and promote the creation of new publicly accessible
green spaces within urban areas, in turn, increasing the
city’s resilience and adaptation to climate change and
the UHI.

Greenery on buildings
Both intensive and extensive green roofs can further help
reduce temperature (FIG. 3b). Larger temperature reduc-
tions can be expected from intensive green roof systems
with deep soil depths and large plants such as Rhapis
excelsa and Erythrina fusca'>'*. Similarly, green walls
provide thermal benefits by shielding wall surfaces from
direct sunlight. Carrier systems are more effective than
support systems at reducing heat gain through the build-
ing facade. For support systems, substantial coverage can
also be achieved over time, but climber plants require
sufficient time to grow, as well as proper maintenance
for thick and even coverage.

It is clear that site conditions must be determined
before commissioning a green wall or green roof project.

It is recommended that solar simulation be conducted
first, with adjacent buildings included to account for
possible overshadowing effects. Building walls with
high solar insolation are suitable for green wall instal-
lation. Green walls can still be installed for well-shaded
areas, but their impact on temperature reduction will
be diminished.

Next, the type of green wall system should be spec-
ified. Carrier systems are preferred for solid walls, as
they provide better insulation and provide consistent
coverage throughout the green wall. Support systems
can be used for glazed facades, but design has to take
into account factors such as view, access and maintain-
ability. Designers might opt for smaller gaps between
trellises and planting multiple climber plants per trellis
to provide thicker and more consistent coverage.

Finally, plants need to be selected for maximizing cool-
ing. Plants with big leaves (high LAI) such as Aristolochia
acuminata are recommended, as they provide more shade
and have less risk of being overcrowded compared with
plants with smaller leaves, such as Selaginella sp.

The latest Singapore Master Plan has set a target of
increasing greenery to ensure thermal comfort in light
of climate change'**. These targets are supported by leg-
islation such as the Landscape Replacement Policy as
well as the BCA Green Mark Scheme, which encourages
the adoption of sky-rise greenery (green roofs and green
walls) with emphasis on shade provision from plants to
reduce the UHI. Greenery density is quantified using
the green plot ratio (GnPR) — a function of green space
area and corresponding LAI'** — as a more direct trans-
lation of academic knowledge of the benefits of high LAI
(leading to higher shade provision and more cooling)
into practice.

Elsewhere, the promotion of sky-rise greenery in
cites is done either through legislation (such as the 2019
Green Roof Act in New York'®, the Biodiversity Act
and Green Roof Statement in France'*' and the Tokyo
Green Roof Law'®) or as a criteria in Green Building
Rating Tools (GBRTs). Established GBRTs such as LEED
(USA) require the installation of extensive or intensive
green roofs as part of vegetation provision'*’. In BEAM
Plus (Hong Kong), points are allocated for the provi-
sion of vegetated building envelope and green roofs to
reduce thermal impact'*. Besides ensuring adequate
greenery provision via GnPR quantification, the BCA
Green Mark Scheme (Singapore) also awards points for
advanced greening efforts, such as having green walls on
the east-facing and west-facing facades, to reduce direct
solar exposure and minimize heat gain'®.

Integration

When considering the combined effects of greenery, the
scale of mitigation benefits must be identified'®® (FIC. 7a).
At the city scale, improvement of greenery type for exist-
ing parks takes priority, while for the installation of new
green parks, cooling intensity and cooling effect distance
should be quantified using urban spatial modelling tools.
At the district scale, street dimension and street canyon
characteristics have a major role; street trees and verti-
cal greenery are the most appropriate solutions. At the
neighbourhood scale, areas where citizens are exposed
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Fig. 7 | Translation of greenery research into design. a | Proposed framework for implementing greenery at different
scales. b| A summary of cooling benefits of urban greenery. UGI, urban green infrastructure. Panel a is adapted with

permission from REF.1°,

to high mortality and morbidity due to excess heat
should be identified. Pocket parks, small green spaces
and vertical greenery are the first to be considered, espe-
cially if the identified neighbourhoods are densely built
and populated.

To better mitigate urban heat, it is advisable to employ
a combination of parks, tree and shrub plantings, and
vertical and rooftop greenery, situated at areas where
building occupants and pedestrians can benefit most
from their cooling benefits (FIG. 7b). The different forms
of greenery occupy different spaces in the built environ-
ment, so they are not mutually exclusive. It is important
for the planning of greenery provision to commence at
the design stage and not as an afterthought.

Simulation of solar exposure should be conducted
for all surfaces (including ground level, as well as the
building envelope) for the purpose of identifying areas
of high solar insolation, where the addition of greenery

should be prioritized. This addition could be select-
ing trees with large canopies to shade main pedestrian
paths or assigning green walls for facades with high
solar exposure. Solar exposure is highly contextual and
dependent on the local climate. Therefore, adjacent
buildings should also be modelled and appropriate
weather files be used for simulating conditions for the
entire year. Once vulnerable areas have been identified,
designers can start to select the appropriate plant spe-
cies or greenery systems. After designing with the solar
simulation results, architects can conduct iterative sim-
ulation studies to determine the impact of their greenery
design schemes on thermal comfort and energy savings.
This process can be repeated until the desired outcome
is achieved. Urban planners can adopt a similar meth-
odology for park design. Green spaces should be evenly
interspersed throughout the city, so that cooling from
parks can be more widespread. Care should be taken
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Physiological equivalent
temperature

Air temperature at which, in a
typical indoor setting, the heat
balance of the human body is
maintained with core and skin
temperatures equal to those
under the conditions being
assessed. It provides an
indication of thermal comfort,
applicable for both indoors
and outdoors.

Computational fluid
dynamics

(CFD). Quantitative modelling
of fluid flow based on the
laws of mass, momentum
and energy conservation

that govern fluid motion.

to have less convoluted site plans and to maximize tree
canopy coverage.

Summary and future perspectives

Peak UHI intensities can reach 10°C (REFS™>'®"). This
Review has shown that greenery, in all its forms, can be
used strategically to alleviate heat gain, reduce thermal
stress and, thereby, morbidity and mortality. Indeed,
through shade provision and evapotranspiration, green-
ery on the ground and greenery on buildings can reduce
air temperatures by ~3°C (FIC. 3). However, the cooling
benefits of urban greenery, be it greenery on the ground
or on buildings, is not homogeneous, and is influenced
by climate, plant selection and placement, as well as size
and shape for green parks (FIGS 4,6). When rightly trans-
lated into design guidelines, scientific understanding of
urban greenery can, thus, inform future urban design,
which is vital, given anthropogenic climate change and
the rising incidence of heatwaves. However, future
research is required to maximize the potential of urban
vegetation as a mitigation tool, including the following.

Plant functional traits database

While the cooling benefits of different forms of green-
ery have been widely established, many studies point
to the lack of specific data to make informed choices
when deciding on the size and shape of green spaces,
or when specifying plants for enhancing cooling; that is,
there has not been a coordinated effort to come up with
a comprehensive database of plant functional trait values
at the species level. This database could include growth
performance of plants to facilitate green wall coverage'**,
to information on drought tolerance of trees for resilient
streetscapes in light of changing weather patterns and
water availability'"’.

Owing to the lack of complete information, urban
designers are not able to actively select plants that can
provide more cooling. More importantly, this absence
of information can lead to inaccuracies when simulating
the cooling effects of greenery, as input factors such as
LA, evapotranspiration and vegetation coverage'*>'”" are
inadvertently generalized'”'. By having a consolidated
database, researchers can build on existing knowledge
and minimize testing plant species that have already
been tested in previous studies. To ensure robustness
of results, standards for setting up experiments can also
be recommended, including minimum measurement
periods, data logging frequency and specifications for
sensor quality. Replicability of tests, which is a critical
indication of reliability of methodology but often over-
looked in this field of study'’*'”, can ensue. This can
range from growth performance of plants to facilitate
green wall coverage'® to information on drought toler-
ance of trees for resilient streetscapes in light of changing

weather patterns and water availability'".

Thermal comfort

While much emphasis has been placed on understanding
temperature reduction associated with urban greenery,
future research must also prioritize expanding knowl-
edge of thermal comfort — a combination of micro-
climatic factors such as air temperature, mean radiant

temperature, air velocity and relative humidity'’*'”°.
A single tree, for example, has been found to be able to
reduce the physiological equivalent temperature by up
to 11 °C, but with marked variability owing to myriad
factors, including time of day, surrounding vegeta-
tion, urban geometry and prevailing wind flow near
the measurement spot'’®. Thus, although greenery can
significantly improve thermal comfort by reducing the
mean radiant temperature through shade provision and
evapotranspiration, it is equally possible that trees or
tall shrubs impede wind flow, leading to overall thermal
discomfort'”’”. Indeed, other studies have gone further
to show that inappropriate tree placement can be highly
detrimental to the outdoor environment, hindering
anthropogenic heat and pollutant dispersion in the
urban environment'’%'7?,

To address these issues, computational fluid dynamics
(CFD) simulations can be used to provide some under-
standing on how placement of vegetation, especially for
trees and tall shrubs, can complement prevailing wind
conditions”"'®. However, given the complexity and com-
puting resources required, understanding of greenery
impacts on wind flow using CFD is in its infancy and a
resource ready to be fully utilized.

Translation into design guidelines
Much as research is crucial to understanding the cooling
benefits of greenery, it is equally important to translate
what is known into practical design. These guidelines
can range from simple rules such as prioritizing east—
west orientations for green wall facings to maximiz-
ing heat reduction for the building'*, selecting trees
with high canopy density'”?, to complex frameworks
that take into consideration surrounding built mor-
phology and macroscale and microscale variables'*°.
Different modes of greenery infrastructure can be rec-
ommended based on the corresponding scale of inter-
vention, with consideration of other mitigating factors,
such as urban geometry and climate (FIG. 7a). Through
this method, specific greenery needs of the site can be
addressed adequately and comprehensively in a ‘right
tree, right place’ approach>*'¥'. This performance-based
(or translational) approach can further look into pedes-
trian comfort at predefined routes and examine how
canopy shapes and tree placement can maximize shade
provision, leading to improved thermal comfort.
Besides reducing temperature, the presence of green-
ery can also improve air quality'®’, promote urban
biodiversity'®’ and stimulate mental as well as physio-
logical well-being'®’. As an ecosystem service, greenery,
therefore, offers a plethora of benefits to the urban envi-
ronment, the information of which must be available to
maximize greenery benefits. In addition, these design
frameworks provide the opportunity for designers to
couple other forms of climate regulation services into
their design schema, from blue infrastructure (water-
ways)”, cool materials (cool roofs and cool pavements)*,
to retroreflective facades'®. Such efforts are key to
encouraging the industry to adopt greening practices and
improving thermal conditions of the urban environment.
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